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POSSIBILITY OF RAPID DETERMINATION OF TURBULENCE GENERATION 

IN A LAMINAR BOUNDARY LAYER 

E. I. Polyak UDC 532.526.3 

An engineering method is proposed for determining the initiation of turbulence 
in a subsonic (M ~ i) laminar boundary layer with a heat supply in the presence 
of a pressure gradient and injection. 

A large number of theoretical and experimental works have by now been devoted to the 
question of the transition of a laminar boundary layer into a turbulent boundary layer. How- 
ever, this phenomenon (transition from laminar to turbulent boundary layer) is not amenable 
to rational explanation in every sense. What is needed is a methodological approach which 
considers both theoretical and empirical aspects of the phenomenon. Possible elements of 
such an approach, presented below, permit consideration of some of these aspects. 

To determine the moment of loss of stability of the laminar boundary layer on the body 
under consideration, it is necessary to have estimates of the velocity profiles of this lay- 
er along the generatrix of the body. However, such estimates are often lacking, or obtain- 
ing them proves to be a very complex task. Thus, the stability of an incompressible laminar 
boundary layer is often determined by using the approximate velocity profile of K. Pohlhausen 
[i], which adequately describes the solutions of the equation of an incompressible boundary 
layer in the presence of a pressure gradient: 
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A 
u = 2 q  --  2q3+ ~ +  - -~(~--3~z+3,1  a -  qg- (1) 
Ue 

The point of loss of stability of the laminar boundary layer (the beginning of turbu- 
lence) depends heavily on the first form parameter A. The dependences of Recr and Rest are 
given in several works. For example, Recr = f(A) for an incompressible boundary layer is 
given in [i], while Re0t = f(A) for a subsonic compressible boundary layer is given in [2]. 
For rapid determination of the point of loss of stability of a laminar boundary layer with 
simultaneous injection and and pressure gradient, propose that Aef be introduced as follows. 

We differentiate Eq. (i) with respect to n: 

u~ _ 2__6q ~+ 4~3= A ( l __6~  + 9 t ] ~ _ .  4~3)" 
ue - ' 6 (2) 

At the wall (n = 0) we have 

where 

Un~ = 2 +  A 
ue 6 (3) 

Unw = Uuw~" (4) 

With i n j e c t i o n ,  Uy w d e c r e a s e s .  This dec rease  i s  accounted  fo r  by m u l t i p l y i n g  Uyw in the ab-  
sence of i n j e c t i o n  by the c o e f f i c i e n t  ~ [3].  We then ob t a in  

u ~  uu~ST = u ~ i T ,  (5) 

where Uqw~ is the derivative of velocity with respect to ~ in the absence of injection. There 
is a great deal of published data on the dependence of P on the amount of injection, the com- 
position of the injected gas, and the pressure gradient (see, e.g., [i, 3, 4]). 

We substitute the value of U~w from Eq. (5) into Eq~ (3) 

Tun~l - 2 +  A .  (6) 
Ue 6 

It follows from Eq. (6) that 

A = A e f = (  un~l~Fue 2) 6, (7) 

where Aef i s  an expres s ion  fo r  A which cons ide r s  the s imul taneous  e f f e c t  of  i n j e c t i o n  and a 
p r e s s u r e  g r a d i e n t .  When ~ = 1.0 (no i n j e c t i o n ) :  

in this case 

A A e f =  dp 5 z = ; ( 8 )  
dx  ~u~ 

1 dp 6 2 Unwl - -  2 - - - - -  

u~ 6 d x  ~u~ (9) 

We insert U~wl/U e from Eq. (9) into Eq. (7) 

A e f =  ( dp 6 z 
dx  ~tu e 

- - + 1 2 )  ~ - - 1 2 .  (10) 

Using the dependence of Recr on A from [i], we calculated Recr for a plate (dp/dx = 0) 
with different values of suction (or negative injection). Here, instead of A in the function 
Recr = f(A), we inserted the value of Aef. Comparison of our estimates of Recr with results 
calculated by A. Ulrich (results presented in [i]) for exact velocity profiles in accordance 
with stability theory showed satisfactory agreement within a fairly broad range of suction. 
For ~ = O, 0.005, 0.02, and 0.08, Re~,cr was equal to 575, 1120, 1820, and 3940 according to 
Ulrich and 575, ii00, 1850, and 4780 according to our results. 

Equation (I0) pertains to the boundary layer of an incompressible liquid. 
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Fig. i. Comparison of velocity profiles on a plate obtained 
from an exact calculation and Eq. (15): i) To/T e = 1.2; 2) 
To/T e = 2; 3) exact calculation, Pr = 1.0, T w = Te; 4),~p- 
proximate formula (15), Pr = 1.0, T w = T e. 

Fig. 2. Effect of the form parameter on the numbers Recr 
and Re0t: i) Reet from [2]; 2) Recr from [i]; 3) T' = 0.1%; 
4) 0.3; 5) 1.25%. 

Let us return to examination of Eq. (i). The coefficients in this equation were ob- 
tained on the basis of the requirement of the satisfaction of the boundary conditions for 
problems of an incompressible boundary layer [i]: 

O2u 1 dp du~ 
g = O ;  u = O ;  v . . . . .  ue - - -  

Og 2 9e dx dx 

Ou O2u 
- -  O; - - 0 .  

ag Og ~ 
Y----5; u=u~;  -- -- 

We will examine an approximation of the velocity profile of the equation of a compressible 
laminar boundary layer. The boundary conditions in this case will be as follows: 

(il) 

(12) 

y O; u =  O; --~y V dx dx w ~ PeUe 

Ou 0 [ Ou 1 g=8; u=u~,; -~y -0 ;  ~[I~-~g-j =0. 

(13) 

(14) 

If the velocity profile is approximated by a fourth-degree polynomial and the coeffi- 
cients are determined so as to satisfy boundary conditions (13) and (14), we obtain the fol- 
lowing expression for U/Ue: 

uo 6 

-- 6 mTnw 1 12~1 ~! 2 +  - -  12 @ 8  ~l 3 
coTn,~ Tw T~ 

+ (  6-3(0TnwT~ ~ --~lS)] " ]~1 ~ -+- A~ (~1 --  3~12 q- 3~13 

(15) 
In deriving Eq. (15), we assumed that Tne~- O. This is valid for Pr numbers differing little 
from i. 

Equation (15) exaggerates the effect of ~Tnw/T w on the velocity profile for large values 
of mTnw/T w. However, the agreement between exact calculations of velocity profiles with cal- 
culations performed with Eq. (15) is quite satisfactory when mT~w/T w is small. Figure i com- 
pares calculations of profiles according to the program in [4] with calculations with Eq, 
(15) when dp/dx = O, It can be seen from Fig. i that the agreement is satisfactory, As 
mTnw/T w+0, Eq, (15) changes into Eq. (i), The exaggerated effect of mTqw/T w on the profile 
in Eq, (15) can probably be reduced by using a more exact velocity-profile approximation. 
EquatiOn (15) gives us the following (in the same way that Eq, (i0) was obtained from Eq. 
(i)): 

a~f=(  dp 8~ ) 5 12 W--  12. 
dx ~ u ~  (16) 
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Fig. 3. Contour of 
the nose of a body 
on whose surface 
will be a laminar 
boundary layer (Tw = 
523~ T i =217~ 

12 oP~0 = 1160 Pa; u i = 
m/sec): i) ~ini = 

89.9 ~ ~ = 1.0; 2) 

Bin i = 88.7 ~ P = 
1.0; 3) Bini = 77.75~ 

= 1.0; 4) Bini = 89'8~ 
= 0.3; 5) point where 

velocity on the boundary 
of the boundary layer 
equals the injection ve- 
locity (D. F. indicates 
direction of the flow); 
x, y, in m. 

As an engineering application, let us examine the question of what should be the form of 
the nose of an axisymmetric body so that laminar flow is maintained on it. As initial data 
we assign the function Recr = f(A), taking it from [I] (Fig. 2). The results of calculation 
of the form of the body are shown in Fig. 3. The problem was solved as follows: at an ini- 
tial point (with the coordinates x = O, y = 0) we assign the angle of inclination of the 
curve of the contour to the axis of the body B = ~ini" Along a straight line with the angle 
of inclination ~, we calculate the pressure Pe, velocity Ue, boundary-layer thickness ~, A, 
~f, and Reerun. If Re0run exceeds Recr , then the running angle of inclination B decreases 
by a certain amount d~. (Here we considered the dependence of Recr on the temperature ratio 
Tw/T e for a compressible boundary layer in accordance with stability theory.) The pressure 
coefficient was determined in accordance with a modification of Newton's theory. The total 
pressure on the boundary of the boundary layer was assumed equal to the total pressure at the 
forward point of the body. The thickness of the boundary layer was calculated from the formula 

= 5 ,5Xef  
o.~ �9 (17) 

Re  x e f c o n  

In Eq. (17) we inserted the coefficient 5.5. This corresponds to a velocity u = 0.999u e 
on the boundary of the boundary layer (if u = 0.99Ue, then a coefficient of 4.5 must be in- 
serted). The possible error of the determination of 5.5 as the coefficient (even if amount- 
ing to 15-20%) has only a slight effect on the final result. The value of Xef was calculated 
from the formula 

x 

(18) 
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It can be seen from the results shown in Fig. 3 that the diameter of the body increases 
with Bini. This is due to the fact that an increase in Bin i is accompanied by a decrease in 
the density of the flow at the boundary of the boundary layer and, thus, the value of Re0run 
at the beginning of the contour. It should be noted that this calculation can be performed 
only in the subsonic part of the boundary layer, since Recr begins to depend significantly 
on M at M> i, and the sign of the dependence of Recr on A changes as well (see, e.g., [5]). 

NOTATION 

M, Mach number; u, flow velocity; p, pressure; T, temperature; x, y, coordinates; n = 

y/6 dimensionless coordinates; ~, thickness of the boundary layer; A dp 55 , . . . .  , first 
dx ,~ue 

form parameter; ~, kinematic viscosity; ~ = BT ~, absolute viscosity; B, const; ~, exponent in 

I ~- 0.165 controlling temperature; the formula for absolute viscosity; Tco n = (T~+T~)-~- 2EC~A' 

To, stagnation temperature; Cp, specific heat at p = const; Pr, Prandtl number; g, accelera- 
tion due to gravity; A, equivalent of heat conversion to mechanical work; 0, momentum thick- 

ness; 8", displacement thickness; Re, Reynolds number; Recr = (--~--e)trUe0 , Reynolds number of 

loss of stability of the boundary layer; Rex uePeX R%=uePeO uePe6* UeflcO]iX �9 -- , ; Re6, = -  ; Rexcon:  --- , 
P,e ~e ~te ~e 

T, O __ dT du au d~l ' t t ~ = - ~ N ;  uu= dy ; YT' distance from a surface point of the axisymmetric body to the 

axis; 0, density; B, angle of inclination of a plane tangent to the surface of the body to 
the axis of the body; T', magnitude of turbulent pulsations in the incoming flow, % of Ue; 

C] with injection Vw, velocity; . . ( 1-~e 1 friction coefficient; P = suction $-- vw ~Re~. Indices: C f, Cf withoutinjection ' 

w, s u r f a c e  o f  b o d y ;  e ,  e x t e r n a l  b o u n d a r y  o f  b o u n d a r y  l a y e r ;  c o n ,  p a . r a m e t e r s  d e t e r m i n e d  a t  t h e  
c o n t r o l l i n g  t e m p e r a t u r e ;  e f ,  e f f e c t i v e  p a r a m e t e r ;  r u n ,  r u n n i n g  p a r a m e t e r ;  i ,  i n c o m i n g  f l o w ;  
t ,  b e g i n n i n g  o f  t r a n s i t i o n ;  c r ,  l o s s  o f  s t a b i l i t y  o f  t h e  l a m i n a r  b o u n d a r y  l a y e r .  

1. 
2. 

3. 

4. 
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